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The effect of replacing the spatial derivatives in a dispersive wave equation with second- 
order centered finite differences is examined with the use of Fourier transform techniques. 
The discretization is shown to both decrease the rate of spatial decay of the steady-state 
solution, and to introduce additional new transients at least as persistent as those in the 
differential ease, 

1. INTRODUCTION 

The central issue in approximating a partial differential equation by a finite 
difference equation is the degree to which the difference equation solution agrees with 
the solution to the differential equation. This agreement can be considered in both its 
quantitative (e.g., relative error), or qualitative aspects, e.g., behavior of transients, 
propagation of fronts, etc. 

In this paper we investigate a prototype dispersive wave (hyperbolic) equation. 
Our particular example arose in numerical weather prediction. Meteorologists 
speak of the “geostrophic balance” that exists in the atmosphere between Coriolis 
force and pressure gradient force. When the atmosphere is modeled by the so-called 
meteorological primitive equations, this balance condition is contained in a dispersive 
wave equation. This dispersive wave mechanism is the primary one by which the 
model atmosphere reacts to imbalances (either numerical or due to errors in obser- 
vational data) in initial conditions, and moves toward the geostrophic balance in the 
process referred to as geostrophic adjustment. Forecasts at times before this balance 
is reached are generally inaccurate. 

Our model arose in the simplest special case of this geostrophic adjustment process. 
Since all practical solutions of the primitive equations are numerical, our purpose is 
to consider the effect of quasi-discretization on the solution of the dispersive wave 
equation. The quasi-discretization chosen is the most common method used in 
practice-centered, second-order spatial differences. The basic model is linearized, 
since we wish to have a solution to the differential case to compare the quasi-discrete 
solution to. The comparison of solutions comes in two important areas: the depen- 
dence of the final state on the initial data, and the order of magnitude of the transients 
involved. 
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In both cases solutions are obtained by Fourier transform methods, with steady- 
state solutions extracted directly from the transforms and inverted in closed form, 
and the asymptotic behavior of the transients determined by the method of stationary 
phase. 

Our analysis shows that discretization of spatial derivatives has two major effects: 

(1) The initial conditions of the differential problem contribute to the steady- 
state solution in a manner that decays exponentially with distance. This qualitative 
effect is retained in the quasi-discrete formulation, but the rate of decay is decreased. 

(2) The discretization introduces additional transients beyond those encountered 
in the differential case. These new transients are at least of the same magnitude of 
decay as the differential transients, and, in some instances, they are more persistent. 

2. THE DIFFERENTIAL ONE-DIMENSIONAL ADJUSTMENT PROCESS 

One of the simplest models of dispersive waves is the linearized one-dimensional 
shallow water equations with no mean flow, in an infinite region: 

(au/at) -fi + g(ah/ax) = 0; (1) 
(au/at) + fu = 0; (4 

(ah/at) + Iqaupx) = 0; (3) 

where ZJ is the perturbation velocity in the x direction, u is the perturbation velocity 
normal to the x direction, H and h are the mean and perturbed heights of the free 
surface, respectively, and g > 0 andf > 0 are gravitational and Coriolis parameters, 
respectively. This model is especially important in the study of the meteorological 
problem of geostrophic adjustment, and has been studied in some detail by Rossby [ 11, 
Cahn [2], Blumen [3], and Winninghoff [4]. In their papers, the model has been 
studied by eliminating between the equations to arrive at 

(a%/w) + f”U - gH(i32upx2) = 0, (4) 

then solving (4) by a Fourier transform approach. After solving (4), solutions for h 
and v are obtained by substitution into (2) and (3), although closed-form solutions 
are not produced in some of the papers. Note that the dispersive character of (4) is 
clearly seen by assuming a wave solution 

u(x, t) = &+-vt), 

which leads immediately to 

v2 = f” + k2gH = f”(1 + X2k2), x = (giY)lqJ (5) 

An alternative means of solving (l)-(3) which is superior in that it does not require 
elimination, it produces U, o, and h without back substitution, it yields interesting 
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insights into the transient and steady-state behavior of the solutions in the differential 
case, and it has an extension in the quasi-discrete case that is quite illuminating, 
is to directly transform the system (l)-(3). Thus, if we denote Fourier transforms by 
an overlying tilde, e.g., 

F{u} = zqk, t) = 1-t u(x, 2) e-ikP dx, 

etc., then (l)-(3) reduce to 

dC/dt = f5 - ikgh”, (6) 
du”ldt = -jii, (7) 
d&dt = -ikHU, (8) 

together with initial conditions 

ii, = C(k, 0) = J-1 u(x, 0) cikx dx, (9) 

etc. Since (6)-(a) are a coupled set of constant coefficient ordinary differential 
equations, they can be solved by the usual process of finding the eigenvalues and 
eigenvectors of the coefficient matrix. This leads straightforwardly to 

17 = ikga, + (if/v3 a2eiVt - (iflv”) c&vt, 

Ii = fal - (kH/v2) a2eivt - (kH/v2) a3e-iut, 

where v is given by (5), and the CITY are picked to satisfy the initial conditions. Observe 
that the eivt and eeiYt terms both represent the transforms of transients in the time 
domain. Solving the initial conditions for the ai , collecting like terms in (IO), and 
simplifying yields 

J(k, t) = 1, cos vt + 8% sin vt - !!!@E sin vt, 
V V 

f- fi(k, t) = - ‘; u. sin vt + 
k2gH 

I y2 + $ cos vt\ 5, + 1 Jy { 1 - cos vt} A0 , (11) 

L(k, t) = - F ~a, sin vt - F{l - ~0s vt> 6, + [f + y cos vt & . ] 

We observe that (11) immediately yields by inspection the transform of the steady- 
state (often referred to by meteorologists as the “balanced” state) solution: 

G,(k) = 0, 
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These can be immediately inverted by the convolution theorem, and the observation 
that 

s 
m 

e-lzllne-ikz dx = 2h/(l + k2h2) = (2X/v2)f2 
--m 

to yield 

H a 
h,(x) = &Y 0) - yjy s 

e-ls-sl/A I g --m c7 $ (s, 0) - u(s, O)! ds. 

We observe, in passing: (a) li(k, 0) does not contribute to any of the steady-state 
solutions. (b) The term in (13), 

{-(g/f) g (ho) + 4% on, (14) 

is the initial value of the quantity usually referred to in meteorology as the ageostrophic 
wind. It can be considered as a measure of “imbalance” in the initial state that 
contributes to the final state, and at steady state its effects are strongest in the 
immediate neighborhood of the initial imbalance and die off exponentially in space 
away from it. 

Observe also that the transient part of (11) can be written 

z&(k 2 t) = 22, cos vt + f jB 0 

f f ” Qk, t) = - - Co sin vt + - 
V V2 

&(k, t) = - 7 ikHf - zio sin vt + - v2 Oo 
i 

(15) 

Explicit inverses to these transforms are expressible in terms of convolutions involving 
Jo[(l/A)(X2f2t2 - ~3~1~1. However, a simplified view of the asymptotic behavior of the 
transients is possibly by using the method of stationary phase. Let 

ah 

Then 

4x, 0 = u(x, t) - k/f> ax (x, f). 

1 
2i(k, 0) cos vt eikz dk + z --m v s 

m f d(k, 0) sin vt eikz dk. (16) 
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Thus, using the method of stationary phase (Appendix l), we can show, for fixed x as 
t-+cO: 

u&G t> - [ 
Apt2 i 

I’ 2 il t h-lx 

277(X2f2t2 - x2)3/2 p (/yt2 _ x2)1/2 ’ O)/ 

x cos (; (jpf2t2 - x2)l/2 + &j + @r,t2h/t x2P2 

x d (~2f2L;I-‘Xx2)l,2 I ( 
, Ojl sin (i (h2f2t2 - x2)l12 + sx)/, (17) 

where #k. and & are slowly varying phases. When / x ) Q Aft, this is more conveniently 
approximated as 

ur(x, t> - 
(18) 

Thus the decay to steady state of u at a fixed point x is governed by two factors: 
(a) a t-li2 decay, which can be interpreted as the effect due to the dispersive nature 
of the process; and (b) an additional possible decay, depending on whether 

Since 

pII I I(x/(X2ft), O)l = 0 and plil / d(x/(Xzft), 0)l = 0. 

this factor depends on the distribution into the longer waves of the initial values. 
Similar analyses of z+(x, t) and hT(x, t) yield 

(19) 

and 

h-(x, t> - [g-&J” I- & 16 ($j, OjI Wft + A) 

Note the one difference in hT(x, t). Due to the presence of the (ik) term in h,(k, t), 
the decay due to dispersion of hT(x, t) proceeds as r3j2, rather than t-lj2. 

In summary then, the differential formulation of the dispersive wave model (l)-(3), 
is solved by transforming to a system of ordinary differential equations. The differential 
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model always tends to a steady state, whose difference from the initial state is deter- 
mined solely by what we have called the initial ageostrophic wind field, (14). The 
contributions from regions where this ageostrophic field is initially nonzero die out 
in the steady state exponentially with distance. Lastly, both the initial u and ageo- 
strophic wind fields contribute to transients that die out in time as tW2 for the 
velocities, and Pi2 for the free surface height. 

3. SECOND-ORDER CENTERED FINITE DIFFERENCES: THE QUASI-DISCRETE ADJUSTMENT 

In this section we present an analytic treatment of the most common difference 
scheme used for (l)-(3), and investigate the resulting effect on the steady-state and 
transient behavior discussed above. 

Consider the continuous, quasi-discrete, second-order centered-leapfrog formu- 
lation of (l)-(3): 

au/at =~u(x, t) - (g/2dx)[h(x + AX, t) - h(X - AX, t)], 

au/at = +(x, t), 

ah/at = --(H/~~x)[~(x + dx,t) - U(X - AxJ)]. 
(21) 

If we Fourier transform this system, noting 

I 

m 

u(x + Ax, t) ecikz dx = eikd%(k, t), 
-m 

we have 

dzi/dt = f5 - (ig/dx)(sin k Ax)& 

dC/dt = -fzi, 
dh/dt = -(iH/dx)(sin k Ax)6 

(22) 

Observe that this system is identical to (6)-(8) with k replaced by 

u = (sin k dx)/dx. (23) 

Thus the solution to (22) becomes identical to (1 1), except k is replaced by u, and v by 

D = [l + (X/~X)~ sin2 k ~Ix]l/~. (24) 

Observe that the sinusoidal terms in (11) continue to represent transients when v is 
replaced by P and k by o. Thus the quasi-discrete case will tend toward a steady state 
whose transform is 

u’,(k) = 0, 

bdk) = 6, + [l/(1 + A2u2)]{(iug/‘f) r;, - G,}, 

h(k) = S + (H/f)Ml + A2u2)l iu{@g/j) 4, - q,}. 

(25) 
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It is easily shown that 

where S{ } denotes the Fourier transform. We shall let 

g h(x + Ax, t) - h(x - Ax, 2) 
d(x, t) = u(x, f) - _r 

2Ax 

Thus if we can invert ia/(l + h2a2) and l/(1 + Xzo2), the steady-state solution would 
be available by convolution. These are inverted in Appendix 2, where we show 

1” 1 
-1 

Ax .+I= /A 
25~ -r,, 1 + X202 ezkz dk = (X2 + (Ax)~)~/~ n=--m 

f 6(x - 2n Ax), 

and 

1 O” 
-1 

io -A x e-w /A 
2lr m-m 1 + Pa2 eikx dk = A[A” + (Ax)21112 12=--rr 

f 6(x - (2n 

where 
,8 = (X/Ax) sinh-l(Ax/X), 

and 0 < /3 < 1 with equality only for Ax = 0. 
Thus we can arrive at 

us(x) = z-(x, 0) - Ax lm 1 
-cc 

[x2 fe;~~211,2 g S(s - 2n Ax)1 2(.x 
oc 

- 1) Ax), 

(28) 

s, 0) ds 

1 
= ‘(*’ ‘) - 2[h” + (Ax>21112 n=--m 

‘f {e--B12n~~llA 2(x - 2n Ax, O)(ZAx)}, 

and similarly 

H 
hS(x) = h(x, ‘) + 2jj[jj2 + (AX)2f]1/2 

x C (e-1(2-1 5 n )w/A d(x - (2n - 1) Ax, 0)(2Ax)}. 
n=-cc 

(29) 

(30) 

Clearly (29)-(30) tend toward the corresponding integral ,forms (13) as Ax + 0. 
These expressions can now be examined versus (13). The conclusions that we can 

draw are that conversion of (l)-(3) to centered, second-order, quasi-discrete form 
results in: 

(1) The measure of imbalance, the initial ageostrophic wind, is converted to a 
finite differenced measure. 
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(2) Although at steady state the effects of an initial disturbance die off exponen- 
tially away from its original neighborhood, the rate of decay is less than in the 
differential case. Furthermore, the rate of decay decreases as Ax/X increases. 

(3) For the steady states, only the values of the ageostrophic wind at alternating 
points are considered. 

Our interpretation of why the sums in (29)-(30) involve only alternating points is 
that, when elimination is tried on (21), one ends with the equation for u involving only 
alternating points: 

$ u(x, t) = -j%(x, t) 

gH 
+ 4(0x)2 

- {u(x + 2dx, t) - 2U(X, t) + u(x - 2rlx, t)}. (31) 

A complete stationary phase analysis of the transient solution in the quasi-discrete 
case, 

f * z&(k, t) = zi, cos i2 + ; I 6, - Js L(J 
f 1 sin Gt, 

f- f" . ET(k, t) = s u. sin Ct + F I d, - log R, 
f 1 

cos ct 

R,(k, t) = - 7 Co sin Ot - qf 16, - $5 LO! cos Pt, 

(32) 

is algebraically extremely complicated, although quite straightforward. However, 
the salient features are relatively easily treated, and yield the most significant results 
on the transient behavior. Therefore we only present an outline of the details. 

In computing the inversion integrals for (32), terms of the form 

ei(RsiGt) & 

arise. The stationary phase points of these integrals arise as the solutions of 

(33) 

This expression can be simplified by adding (-x) to both sides, squaring and writing 
cos2 k dx as (1 - sin2 k dx), to yield a quadratic in sina k dx. The quadratic formula 
then yields as the points of stationary phase the solutions of 

sin2 k dx = 
(h"j2t" - 9) f [(X2jV - x2)2 - 4j%2XyLlX)211’2 

2Pj2P (34) 
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It is then easily shown that as t - co, these solutions closely approximate 

and 
sin2 k dx + 1 - [x2/(x2f2t2)] 

sin2 k dx f [~~(dx)~X-~/(h~f~t~ - x2)]. 

Clearly, for large t, (35b) yields stationary points near both 

and 
k = [&xP/(h2f2t2 - x2)l12] 

k = i(n/dx). 

(All other solutions of (35b) are beyond the Nyquist cutoff.) The first points are slight 
variants of the stationary points for the differential case. The points near -j-(rr/dx) 
arise solely from the discretization, not the physics of the problem. However, since 
these points give a behavior of [(sink dx)/dx] identical to that of the stationary 
points near k = 0, it is easily shown that they contribute computational transients 
with precisely the same asymptotic behavior as the physical transients. 

Note, before we consider the effect of terms introduced by the i&t solution, (35a), 
that a necessary and sufficient condition for the stationary phase points to be on the 
real axis is that the quantity under the radical sign in (34) be positive. After some 
manipulation, this condition reduces to 

1 x 1/t > f([(dX)2 + xy2 - Ax), t > 0. 

It is not coincidental that the quantity on the right-hand side of the inequality is 
precisely the group propagation velocity for this quasi-discrete case. 

Referring again to the contribution from the stationary phase points satisfying (35a), 
observe that we can easily show from (33) that 

sin2 k dx sin2 k fix + cos2 k dx , 1 I 

and so, near these stationary points, 

&‘(k) N fh2ft ~Ix/[(dx)~ + Aa]1/2. 

Furthermore, note that near these same points 

c/j-- [(Ax)2 + P]lqdx and (T - &I/Ax. 

Thus following again the argument of [5, (3.7.5)], we see that the points of stationary 
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phase which arise from the solution to the first lead to transients whose amplitudes, 
asymptotically, go as follows: 

220 cos Pt -+ 
[ 

[(Ax)2 + A2]1/2 l/2 
2d2ft Ax I I ( u’ &&,O ; 

)I 

[ 

Ax 
2nh2ft[(AX)2 + X211/2 

f- - 5 24, sin Pt + [ 
Ax 112 

2d2f[(Ax)2 + X2]l/2 1 I( zi * 2:x -9 o)l; 

(AxY 
2daft((Ax)2 + X2)3/2 

iaH 
22, sin Pt --+ 

[ 
H2f 112 

-- 
P 2d2t Ax [(Ax)~ + P]l/2 1 I( zi * +- ’ O)l; 

iuHf _ 
---xg- VI) 

V ! 

(Note the evaluations are at &(42Ax) since, as t + co, these are the only solutions 
of (35a) that also satisfy the Nyquist limit.) 

Viewing the above, it is now clear that the additional stationary points which arise 
in this quasi-discrete case, and which tend toward f(42Ax) as t + co cause two 
noticeable effects on the transient behavior: 

(1) All of these transients now die off as t-l12 due to dispersion. Comparing 
this to the results in the differential case, we see that these transients are at least as 
persistent as the differential transients, and for h(x, t) more so, since the differential 
transients in h(x, t) die out as t-3/2. 

(2) Two of these transients (the first and fifth) are somewhat ill behaved as 
(Ax) ---f 0. Assuming U(X, 0) has only finite power, then the Ax term in the denominator 
should be controlled by tail-off of zi(f(~/2Ax), 0) as (Ax) -+ 0, however, these terms 
are virtually certain to be the slowest decaying for small Ax. 

(We note that (35b) also causes stationary points to arise, that tend toward *(r/Ax) 
as t ---f co; however, the transients from these points do not have an asymptotic 
dispersion decay that depends on (Ax), and decay at the same rate as the differential 
transients.) Although we shall not show it analytically, we suspect the additional 
stationary points arise in the quasi-discrete case from two causes, the “folding” in 
temporal frequency that occurs at k = f(42Ax), and the high-frequency cutoff at 
k = &(rr/Ax). 
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4. CONCLUSION 

In this paper we have examined the effect of second-order centered spatial 
discretization on a dispersive wave equation. We have shown that the methods of 
Fourier transforms, and in particular the method of stationary phase, are quite useful 
in such investigations. In both the differential and quasi-discrete cases we have 
provided closed form expressions for the steady-state solutions. These expressions 
show that the contribution from any point in the initial state to the final state decays 
exponentially with distance from that point in both cases, however, the rate of decay 
is decreased by discretization. The transients in both cases have been analyzed by the 
method of stationary phase. This analysis shows that the discretization introduces 
stationary phase points that have no counterpart in the differential case, and, further- 
more, these points contribute transients that decay no faster than the differential ones, 
and in one instance, the discrete transient will dominate the differential transient. 

APPENDIX 1 

Consider the asymptotic behavior of 

WW 1-1 A(k) cos vt eiks dk = Z&.X, t), (1.1) 

where v = f(1 + h2k2)li2. This integral can be decomposed into 

where 

2?r#(x, t) = 1 1 2 l]el A(k) ei’ltk) dk + s.“, A(k) eidz(k) dk,/, 

4,(k) = kx + vt and 4,(k) = kx - vt. 

We can determine the asymptotic behavior as t - co for ftxed x of this term by 
using the method of stationary phase. Let kl and k, be defined by 

h’(k) = 4,‘W = 0, 

where the primes denote derivatives with respect to k. But 

4;(k) = x + hajikl(l + h2k2)l/2, 

and so we find as the point of stationary phase for the first integral: 

kl = - (h,t2xi_x x2)1/2 ' (1.2) 
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which is on the path of integration, for t > x/hf. Similarly, &‘(kJ = 0 yields as the 
stationary point for the second integral, 

XIX 
k2 = @2f2t2 _ x2)1/2 ’ (1.3) 

which is also on the path of integration for t > x/hf. 
Observe that 

+,(k,) = - #,(k,) = (l/h)(PjV - x2)1/2, 

and that 

+;(k,) = -&W,) = hgft 
(1 -t X%,2)1/2 = 

(PfV - x*y > o 
Af 212 

(Note I &(k,)l = I ##,)I = &(k& for Aft > 1 x I, and 4” = d2+/dk2.) 
Thus we have, by [5, (3.7.5), p. 511, 

24 -; (-$-$’ 

x {A(k,) ei[(1/A)(A21p12-22)‘/p t (n/4)] + A(kJ e-i[(l/A)(A*f*lP-2P)‘/l+(n/p)]} 

1 
( 

27rhf 212 
1 

112 
= 2 [pfy - x2~3/2 

x {A( -k,) ei[(1/A)(A2f4~P-z*)‘le+(n/4)] + A(k,) e-i[(1/~)(1*5212-22)‘IP+(n/P)]~- 

But note that if A(k) is the transform of a purely real-valued function, 

Thus, we can write 

,4(--k) = Irn a(x) eikz dx = A*(k). 
-22 

* - [TT(hyZ)jlafZ x2)3/2 ]1’2 1 Re I cos $ (h2f2t2 - x2)l12 + $1 

I Im A(k,) sin [; (hW2 - x2)1/2 + $11, (1.4) 

where k, is given by (1.3). Observe for Aft > I x I, the lead term acts as 

[1/(27rhzf)]‘9 
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Similarly, we can show 

1 
-I 

?. 

2rr -q. 
A(k) sin vt eikX dk 

Apt* 
- 2,4*j2f* - ,2)3:2 [ ]lfl /Re I sin [k (h*f~r’ --. ,~2)1:2 -1 $1 

- Im A(k,) cos [i (X2f2t2 - x*)‘!~ + $1;. (1.5) 

Lastly, since the trigonometric functions in both expressions have the same 
frequency, and since 

{[Re A(k)]* + [Im A(k)]*}‘/* == I A(k)l, 

we see 

I D -- 
I 27 -I‘ 

A(k) cos vt eikz dk 

hf*t* 
I’* 

- 24Vj*t2 - x2)3/2 [ I 
A( cos [; (h*f*r* - x‘y + % I 

P;~ = T - tan-’ [Im A(k,)/Re A(k,)] 

7l 
=- 

4 - wW(k2)) 

and 

I = 
-I 27r -* 

A(k) sin vt eikr dk 

[ 
AfV 

- 27r(PfV - x2)3/2 I 
1:2 

I &k&l sin 
[ 
k (P~V - x2)1/* -- qk]. 

APPENDIX 2 

Consider 

(1/2x) /I [eik2/(l + h2u2)1 dk, where o = sin k dx/h. (2.1) -% 

The denominator, 

4(k) = I + (A/h)* sin” k dx (2.2) 
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is an entire function of k in the complex plane. The zeros of a,h(k) are solutions of 

sin k Ax = ii(dx/h), 

or, letting k = k, + & , 

sin(k, dx + iki dx) = sin(k, dx) cosh(ki dx) + i cos(k, dx) sinh(ki dx) 

= f&4x/A). 

Thus 

Thus 

sin(k, dx) cosh(k, dx) = 0, 

cos(k, dx) sinh(k, dx) = *(Ax/A). 

k, = d+d~x), ki = *(l/Ax) sinh-l(dx/X), (2.3) 

as opposed to the poles at k, = 0, ki = -&l/h for the continuous case. Thus all zeros 
of the denominator lie off the real axis. In fact, they are specifically distributed as 
shown: 

Observe further that at its zeros, 

f(k) = 2(h2/Ax) sin k dx cos k Ax 

= &2(h2/dx)[i(dx/A)] cosh[ isinh-l(dx/h)] 

= f2i[X2 + (Ax)~]~/~, (2.4) 

where the positive sign holds for ki > 0, and the negative one for ki < 0. Thus the 
zeros of t,b(k) are simple poles of the integrand. 

Consider (2.1) for x > 0. (Observe that (2.1) is an even function of x.) To ensure 
Re(ikx) < 0 we will close the contour in Im(k) > 0 half-plane. As long as we route 
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the contour to avoid all the poles there, the integrand is exponentially decaying as 
j k I --f co, Im(k) > 0. Thus, we invoke Jordan’s lemma to yield, for x > 0, 

1 m 
s 

eikz & 
-- 
25. -m 1 + x2u2 = ilm,k,>o 

c Residues ( 1 $T2C2 j 

k = k, + iki 

1 

= 2[P + (Ax)2]‘/2 --m f exp /ix ($$ + i & sinh-l (Gjj 

1 
= 2[P + (Ax)2]1/2 

e-Bz/A g ei(nm/Ar), (2.5) 

where 

/3 = (h/Ax) sinh-l(dx/h). (2.6) 

Observe that (2.5) is not a convergent series in the usual sense. However, viewed as 
a generalized function, it is a Fourier series for the function, periodic of period 2dx, 
given in the interval -Ax < x < Ax by 

fw = f Cnei(nnx/Ax) 3 where c, SE 1. 
--oo 

But observe that 

Thus 

c, = (1/2Ax) I”,“, S(r) e-i(nrrrlAr) dr = 1, all n. 

S(t) = 2Ax S(i), 

and so its periodic extension becomes 

Thus 

S(x) = 2Ax f 8(x - 2n Ax). 
--m 

1 m 
s 

eikr 

-G ma 1 f Pa2 dk = [AZ +~;x)2]l,2 e-B’r”A --m f 6(x - 2n Ax). (2.7) 

Note, if we view /3 as a function 

/I(X) = (I/x) sinh-l x, 
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it is easily shown that 

B(O) = 1 and /3’(x) < 0. 

Thus 0 ==z ,3(x) < 1 with equality only at x = 0. 
Since, for Im k > 0 and large 

1 Sl(rhW - 
Ax Ax 

A2 sin kx -p$iK%) 

the above argument can be essentially repeated for 

-1 
= 2h[h2 + (Ax)~]‘~” 

e-!3x/A f (-1)” eiblnz/dx), x > 0 
--m 

-1 = 2[h2 + (Ax)211,2 e-Blxl/A --m e*(n~/~~)(z+~) f . 

-(Ax) 
= A[X2 + (Ax)~]~/~ 

e-@lsI/h f 6(x - (2n - I) Ax). (2.8) --m 
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